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Abstract. Most local convergence analyses of the sequential quadratic programming (SQP)
algorithm for nonlinear programming make strong assumptions about the solution, namely, that the
active constraint gradients are linearly independent and that no weakly active constraints exist. In
this paper, we establish a framework for variants of SQP that retain the characteristic superlinear
convergence rate even when these assumptions are relaxed, proving general convergence results and
placing some recently proposed SQP variants in this framework. We discuss the reasons for which
implementations of SQP often continue to exhibit good local convergence behavior even when the
assumptions commonlymade in the analysis are violated. Finally, we describe a new algorithm that
formalizes and extends standard SQP implementation techniques, and we prove convergence results
for this method also.

AMS subject classi�cations. 90C33, 90C30, 49M45

1. Introduction. We investigate local convergence properties of variants of the
sequential quadratic programming (SQP) algorithmapplied to the nonlinear program-
ming problem

NLP: min
z

�(z) subject to g(z) � 0;(1.1)

where � : IRn ! IR and g : IRn ! IR
m are twice Lipschitz continuously di�erentiable

functions. We are interested in degenerate problems: those for which the active con-
straint gradients at the solution are linearly dependent and/or the strict complemen-
tarity condition fails to hold.

We showed in [18] that even when strict complementarity, second-order su�cient
conditions, and a constraint quali�cation hold, nonuniqueness of the optimal multi-
plier can produce nonsuperlinear behavior of SQP. Motivated by this observation and
by the fact that primal-dual interior-point algorithms for related problems converge
superlinearly under the conditions just described [19, 16], we proposed a stabilized
SQP (sSQP) method [18] and proved a local superlinear convergence result, later en-
hanced by Hager [11]. Independently, Fischer [8] proposed an algorithm in which a
special procedure for choosing the Lagrange multiplier estimate is inserted between
iterations of SQP. He proved superlinear convergence under slightly di�erent assump-
tions from ours.

Our purposes in this paper are twofold. First, we introduce a common frame-
work, which we call iSQP (for inexact SQP) that allows for a uni�ed analysis of the
stabilization procedures of the preceding paragraph. We prove general convergence
results for methods in the iSQP framework, highlighting the e�ect on the convergence
rate of changes between successive Lagrange multiplier estimates.

Our second goal requires a little more explanation. Implementations of SQP
(for example, SNOPT [10]) often continue to exhibit good local convergence behavior
even on degenerate problems, in spite of the facts that such problems fail to satisfy
the standard assumptions made in local convergence analyses and that theoretical
examples of poor convergence behavior are easy to construct (see the example in
Wright [18]). The iSQP framework proves to be useful in providing some theoretical
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support for this good practical performance. We �nd that the strategy of using the
active (or working) set from the QP subproblem at the previous iteration as the initial
active set for the current iteration is important in explaining the good behavior, as is
the fact that the solver of the QP subproblem is allowed to return a slightly infeasible
answer. Further, we propose and analyze an algorithm called SQPsws, which in
which the techniques used in existing implementations are formalized to produce an
algorithm whose local convergence is superlinear under certain assumptions.

The main point of di�erence between the basic SQP algorithm as presented here
and the versions that are implemented in standard software is that the implementa-
tions usually make use of quasi-Newton Hessian approximations, whereas we assume
here that exact Hessians are used. Still, we believe that our observations below are
relevant to the quasi-Newton case and, in particular, that quasi-Newton versions of
the various algorithms discussed here would exhibit fast local convergence. Extension
of the analysis to this case would, however, not be trivial, since it would have to take
into account such factors as the e�ects of degeneracy on the quasi-Newton updates, so
we leave this issue for possible future work. Another point of di�erence between our
SQP algorithm and the implementations is that the implementations contain various
algorithmic devices to ensure global convergence, which we ignore these here because
of our focus on local properties.

The remainder of the paper is structured as follows. In Section 2, we outline �rst-
order optimality conditions and de�ne various terms and assumptions that are used
in the remainder of the paper. Section 3 de�nes the various second-order su�cient
conditions that are required by the algorithms described in later sections. The iSQP
framework is de�ned in Section 4, where we also prove a useful result about the active
set identi�ed by the iSQP subproblem. Section 5 contains the main results about
convergence of algorithms in the iSQP framework. Brief discussions of the stabilized
SQP algorithm and Fischer's approach are given in Sections 6 and 7, respectively,
where we outline how both methods �t into the iSQP framework. Finally, the new
algorithm SQPsws is described and some superlinear convergence results are proved
for it in Section 8.

2. Assumptions, Notation, and Basic Results. We now review the optimal-
ity conditions for (1.1) and discuss various assumptions that are used in subsequent
sections. These include second-order su�cient conditions of various types, along with
complementarity conditions and the Mangasarian-Fromovitz constraint quali�cation
(MFCQ). Finally, we quote a result that plays a key role in the analysis of the re-
mainder of the paper|that MFCQ is equivalent to boundedness of the set of optimal
Langrange multipliers.

The Lagrangian for (1.1) is

L(z; �) = �(z) + �T g(z);(2.1)

where � 2 IR
m is the vector of Lagrange multipliers. We assume throughout that z�

is a strict local solution of (1.1). When a constraint quali�cation holds at z� (see
discussion below), �rst-order necessary conditions imply that there exists a vector
�� 2 IR

m such that

Lz(z�; ��) = 0; g(z�) � 0; �� � 0; (��)T g(z�) = 0:(2.2)

These relations are the well-known Karush-Kuhn-Tucker (KKT) conditions. The
following sets play an important role in the remainder of the paper:

S� = f�� j�� satis�es (2.2)g(2.3a)
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S = fz�g � S�:(2.3b)

We can write the conditions (2.2) alternatively as

� r�(z�) +rg(z�)��
g(z�)

�
2
�

0
N (��)

�
;(2.4)

where N (�) is the set de�ned by

N (�)
def
=

� fy j y � 0 and yT� = 0g if � � 0,
; otherwise.

(2.5)

The active set at z� is de�ned by

B = fi = 1; 2; : : :;m j gi(z�) = 0g:(2.6)

For any optimal multiplier �� 2 S�, we de�ne the set B+(��) to be the \support"
of ��, that is,

B+(��) = fi 2 B j ��i > 0g:

We de�ne B+ (without argument) as

B+ def
= [��2S� B+(��)(2.7)

and denote its complement in B by B0, that is,

B0 def
= BnB+:

Note that B0 is the set of indices i 2 B such that ��i = 0 for all �� 2 S�. The strict
complementarity (SC) condition for the set S (which we use only sparingly in this
paper) is that

B0 = ;:(2.8)

At some points in the paper, we use a condition that Fischer [8] calls weak com-
plementarity (WCC), namely that

Range[rgi(z�)]i2B+(��) = Range[rgi(z�)]i2B+ ; for all �� 2 S�:(2.9)

Despite its name, WCC is not weaker than SC; neither condition implies the other.
In Section 4, we de�ne the term strict working set to be, roughly speaking, the set

of indices in i 2 f1; 2; : : : ;mg for which the Lagrange multipliers �i of the (possibly
inexact) QP subproblem are strictly positive.

We assume throughout that the Mangasarian-Fromovitz constraint quali�cation
(MFCQ) holds at z� [15]. That is,

rgB(z�)T �y < 0 for some �y 2 IR
n;(2.10)

where rgB(�) is the n� jBj matrix whose rows rgi(�), i 2 B, are the gradients of the
functions gi, i 2 B.

The general smoothness and �rst-order assumption that we make throughout the
paper is as follows.
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Assumption 1. The functions �(�) and g(�) are twice Lipschitz continuously
di�erentiable in an open neighborhood of z�, and the �rst-order condition (2.2) is
satis�ed at z�.

The following result concerning boundedness of the optimal multiplier set S� is
used often in the analysis of later sections.

Lemma 2.1. (Gauvin [9]) Suppose that Assumption 1 holds. Then S� de�ned in
(2.3a) is bounded if and only if the MFCQ (2.10) is satis�ed.

Since S� is de�ned by the linear conditions r�(z�) +rg(z�)�� and �� � 0, it is
closed and convex. Therefore, under the conditions of Lemma 2.1, it is also compact.

We use the notation �(�) to denote Euclidean distances from the primal, dual,
and primal-dual optimal sets, according to context. Speci�cally, we de�ne

�(z)
def
= kz � z�k; �(�)

def
= dist (�;S�); �(z; �)

def
= dist ((z; �);S):(2.11)

We also use P (�) to denote the projection of � onto S�; that is, we have P (�) 2 S�
and kP (�)��k = dist (�;S�). Note that from (2.11) we have �(z)2+�(�)2 = �(z; �)2,
and therefore

�(z) � �(z; �); �(�) � �(z; �):(2.12)

For further analysis of these errors, we use B and B+ to de�ne a direction set T as
follows:

T =

�
w j rgi(z

�)Tw = 0 for i 2 B+
rgi(z�)Tw � 0 for i 2 B0

�
:(2.13)

e(z)
def
= z � z�

and decompose it as

e(z) = eT (z) + eN (z);(2.14)

where eT (z) is the projection of e(z) onto the cone T and eN (z) is the remainder
(which is, of course, normal to T at eT (z)). In fact, there are coe�cients �i, i 2 B
(not necessarily unique), such that

eN (z) =
X
i2B+

�irgi(z�) +
X
i2B0

�irgi(z�); �i � 0 for i 2 B0:(2.15)

Since T is a cone, it is easy to see that eT (�) and eN (�) are continuous in their
arguments and that

eN (�z) = �eN (z); eT (�z) = �eT (z); for all � � 0.

Moreover, since eN (z)T eT (z) = 0, we have

keN (z)k2 + keT (z)k2 = ke(z)k2 = �(z)2 � �(z; �)2

and therefore

keN (z)k � �(z); keT (z)k � �(z):(2.16)
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We use order notation in the following (standard) way: If a matrix, vector, or
scalar quantity M is a function of another matrix, vector, or scalar quantity A, we
write M = O(kAk) if there is a constant � such that kMk � �kAk for all kAk
su�ciently small. We write M = 
(kAk) if there is a constant � such that kMk �
��1kAk for all kAk su�ciently small, and M = �(kAk) if both M = O(kAk) and
M = 
(kAk). We write M = o(kAk) if for all sequences fAkg with kAkk ! 0, the
corresponding sequence fMkg satis�es kMkk=kAkk ! 0.

If r is a vector and A is an index set, we use rA to denote the subvector consisting
of components ri, i 2 A.

3. Second-Order Conditions. The presence of degeneracy allows for a variety
of second-order su�cient conditions, all of which can be expected to hold for a wide
range of problems and all of which are useful in investigating the local convergence
properties of various algorithms. In this section, we de�ne three such conditions that
are needed by algorithms in later sections. We also introduce \extended" variants
of the nonlinear programming problem (1.1) that di�er from (1.1) only in that just
a subset of the constraints is enforced. For some of these subsets, z� remains a
strict local solution satisfying some second-order su�cient condition; such subsets
are particularly useful in the context of the algorithm to be discussed in Section 8.
Finally, we include here several results that relate the conditions introduced in this
section to the assumptions of the preceding section.

Second-order su�cient conditions typically assume that there is a positive value
� > 0 such that the condition

wTLzz(z�; ��)w � �kwk2(3.1)

holds, for some set of �� and w vectors. The three conditions used in this paper are
as follows.

Condition 2s.1. (Second-order su�cient condition.) The condition (3.1) holds for
all �� 2 S� and all w such that

rgi(z�)Tw = 0; for all i 2 B+;
rgi(z�)Tw � 0; for all i 2 B0;

that is, w 2 T .
Condition 2s.2. (Strong second-order su�cient condition.) The condition (3.1)
holds for all �� 2 S� and all w such that

rgi(z�)Tw = 0; for all i 2 B+:

Condition 2s.3. (Locally strong second-order su�cient condition.) For each �� 2
S�, the condition (3.1) holds for all w such that

rgi(z�)Tw = 0; for all i 2 B+(��):(3.2)

Any of these conditions, in tandem with Assumption 1, is su�cient to guarantee
that z� is a strict local solution of (1.1) (see, for instance, Bertsekas [5, Proposi-
tion 3.3.2, Exercise 3.7]). The following lemma relates these three conditions with the
WCC and SC conditions of Section 2.

Lemma 3.1.

(i) Condition 2s.3 ) Condition 2s.2 ) Condition 2s.1.
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(ii) If the SC condition (2.8) holds, then Conditions 2s.2 and 2s.1 are identical.
(iii) If the WCC condition (2.9) holds, then Conditions 2s.3 and 2s.2 are identical.
Proof. The proof of (i) is obvious, since the set of vectors w on which (3.1) is

required to hold is successively larger as we go from 2s.1 to 2s.2 to 2s.3. Statement
(ii) follows immediately from the de�nition (2.8) of strict complementarity. For (iii),
note that (2.9) implies that

null [rgi(z�)]Ti2B+(��) = null [rgi(z�)]Ti2B+ ; for all �� 2 S�;
from which the result follows immediately.

For any subset ~B � B (where B is the active set de�ned in (2.6)), we can de�ne
the nonlinear program in which just the constraints i 2 ~B are enforced as follows:

NLP( ~B): min
z

�(z) subject to gi(z) � 0, all i 2 ~B:(3.3)

Note that any �rst-order point (z�; ��~B) for (3.3) can be extended to a �rst-order point

for (1.1) by simply adding zeros to �ll out the components i =2 ~B. Conversely, any
solution (z�; ��) 2 S for which ��i = 0, i =2 ~B, yields a point (z�; ��~B) that satis�es

the �rst-order conditions for (3.3), by deleting the (zero) components i =2 ~B from ��.
Note, however, that the vector so obtained does not necessarily satisfy second-order
conditions for (3.3); in fact, z� may not even be a local solution for (3.3).

We now de�ne two sets � and �� made up of subsets ~B � B as follows:

�
def
= f ~B � B j z� is a local solution of NLP( ~B)(3.4)

that satis�es Condition 2s.1 applied to NLP( ~B)g;
��

def
= f ~B 2 � j the optimal Lagrange multiplier for NLP( ~B) is uniqueg:(3.5)

When ~B 2 ��, we use ��( ~B) to denote the unique optimal multiplier for NLP( ~B),
padded out with zeros to length m. Note that B 2 �, so that � 6= ;. When the strict
complementarity and nondegeneracy conditions hold at the solution of (1.1), we have
� = �� = fBg.

The sets � and �� become particularly relevant in Section 8, where we propose an
algorithmwhose steps are obtained by applying SQP to problems of the form NLP( ~B).
For now, we prove two simple results about the way that these sets are related to each
other and to the second-order su�cient conditions.

Lemma 3.2. Given some set ~B 2 �, a su�cient condition for ~B 2 �� is that the
vectors frgi(z�); i 2 ~B \ B+g, are linearly independent.

Proof. Since ~B 2 �, there is a vector ��~B such that

X
i2 ~B

��irgi(z�) +r�(z�) = 0:(3.6)

For the components i 2 ~B \B0, we must have that ��i = 0, since otherwise the vector
��~B could be padded out with zeros to yield a vector �� 2 S� with ��i 6= 0 for i 2 B0,
contradicting the de�nition of B+. Hence we can rewrite (3.6) as

X
i2 ~B\B+

��irgi(z�) +r�(z�) = 0;

and so linear independence of the given vector set implies uniqueness of ��~B. Therefore
~B 2 ��, as claimed.
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Lemma 3.3. Suppose that Condition 2s.3 holds. Then Condition 2s.3 also holds
for NLP( ~B), where ~B � B is such that there exists a �� 2 S� with B+(��) � ~B. In
particular, ~B 2 �.

Proof. Suppose that Condition 2s.3 holds for NLP. For all �� 2 S� with B+(��) �
~B, we have by the correspondence between optimal Lagrange multipliers for NLP and
NLP( ~B) discussed above that (3.1) holds for all w satisfying (3.2). Hence, Condition
2s.3 holds for the problem NLP( ~B) as well. Since there is at least one vector ��

with the properties indicated, and since Condition 2s.3 implies Condition 2s.1 by
Lemma 3.1(i), we have ~B 2 �.

4. The iSQP Framework. In the best-known form of the SQP algorithm,
the following inequality constrained subproblem is solved to obtain the step at each
iteration:

min
�z

�zTr�(z) + 1
2�zTLzz(z; �)�z;(4.1)

subject to g(z) +rg(z)T�z � 0,

where (z; �) is the current primal-dual iterate. Denoting the Lagrange multipliers for
the constraints in (4.1) by �+, we see that the solution �z satis�es the following KKT
conditions (cf. (2.4)):

� Lzz(z; �)�z +r�(z) +rg(z)�+
g(z) +rg(z)T�z

�
2
�

0
N (�+)

�
:(4.2)

We focus our attention, however, on a more general framework that allows for
inexactness in the subproblem solution by introducing perturbations into both the
objective and constraints of (4.1). We assume only that (�z; �+) is the solution of

min
�z

�zT (r�(z) + t) + 1
2�zTLzz(z; �)�z;(4.3)

subject to g(z) +rg(z)T�z + r � 0,

for some perturbation vectors t and r. The KKT conditions for (4.3) become

� Lzz(z; �)�z +r�(z) + t+rg(z)�+
g(z) +rg(z)T�z + r

�
2
�

0
N (�+)

�
:(4.4)

We introduce further terminology and notation here: Given a primal-dual solution
(�z; �+) to (4.1) or (4.3), the strict working set is the set of indices i for which �+i is
strictly positive. We denote this set by B(z; �) in the case of (4.1) and B(z; �; t; r) in
the case of (4.3).

When (z; �) is su�ciently close to S, it happens under mild assumptions that the
strict working set B(z; �; t; r) from an iteration of iSQP identi�es a superset of B+(��)
for some optimal multiplier ��. This result is interesting for its own sake and also in
the context of Section 8, so we prove it here.

Lemma 4.1. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold. Then
there is a threshold value �� such that whenever �(z; �) � �� and k(t; r)k � ��, the
solution of the iSQP subproblem (4.3) yields a strict working set B(z; �; t; r) such that
B+(��) � B(z; �; t; r) for at least one �� 2 S�.

Proof. Suppose for contradiction that there is a sequence (z`; �`) with �(z`; �`) #
0 and a sequence of perturbations (t`; r`) with k(t`; r`)k # 0 such that the stated
property does not hold. That is, taking the active set B(z`; �`; t`; r`) for the iSQP
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subproblem, we �nd that the subvector ��BnB(z`;�`;t`;r`) is nonzero for all �
� 2 S�. By

taking a subsequence if necessary, we can assume that B(z`; �`; t`; r`) � B̂ � B for all
`. By compactness of S� (Lemma 2.1) and continuity of k��

BnB̂
k as a function of ��,

we have that

0 < �
def
= min

��2S�

��BnB̂
 :

From Lemma 5.1, we have that the updated multiplier (�`)+ obtained from the iSQP
subproblem (4.3) at (z`; �`; t`; r`) satis�es

�((�`)+) = O(�(z`)) +O(k(t`; r`)k) # 0:

Denoting by P ((�`)+) the projection of (�`)+ onto the set S�, we have that

�((�`)+)2 =
(�`)+ � P ((�`)+)

2 � X
i2BnB̂

�
P ((�`)+)i

�2 � �2 > 0;

giving a contradiction.

5. Local Convergence of iSQP. In this section, we describe the improvement
obtained in a single iSQP step (4.3) (alternatively, (4.4)).

First, we apply a result of Robinson [17] to show that small-norm local solutions
�z exist for the inexact subproblem (4.3) provided that (z; �) is su�ciently close to
the solution set S de�ned in (2.3b). Our two main results, Theorems 5.2 and 5.3, relate
the errors eN (z +�z) and �(z +�z; �+) at the new iterate to errors at the current
point (z; �). In particular, Theorem 5.3 demonstrates that superlinear convergence of
the primal iterate depends critically on stability of the Lagrange multiplier estimates:
� must not change too much from one iteration to the next.

The �rst result is obtained by applying Robinson's stability results in [17] to the
inexact SQP subproblem (4.3).

Lemma 5.1. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold. Then
for all (z; �; t; r) with �(z; �) and k(t; r)k su�ciently small, the problem (4.3) has a
local solution �z near 0 that satis�es

k�zk+ �(�+) = O(�(z)) +O(k(t; r)k);(5.1)

where �+ is the vector of multipliers corresponding to the solution �z of (4.3).
Proof. For any �xed �� 2 S�, consider the problem

min
�z

�zTr�(z�) + 1
2�zTLzz(z�; ��)�z;(5.2)

subject to g(z�) +rg(z�)T�z � 0;

whose primal-dual solution set is f0g � S�. MFCQ holds for this problem, since the
active set B is the same as for the nonlinear problem (1.1), and it is easy to see that
Condition 2s.1 is satis�ed as well.

Consider now the parametrized version (4.3) of the problem (5.2), in which the
parametrization is de�ned by the vector p = (z; �; t; r). (We recover (5.2) from (4.3)
by setting p = p0 = (z�; ��; 0; 0).) We de�ne the following subsets of IRn:

stat(p) = f�z j (�z; �+) satis�es KKT conditions for (4.3) for some �+g,
lsol(p) = f�z j�z is a local solution of (4.3)g.
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By applying Theorem 3.2 of Robinson [17], we �nd that there is a neighborhood
N1(��) of p0 and a neighborhood M1(��) of 0 such that

stat(p) \M1(��) is continuous in p at p0;
lsol(p)\M1(��) is nonempty for p 2 N1(��), and a subset of stat(p)\M1(��).

Moreover, we have from Theorem 4.2 of Robinson [17] that there is a neighborhood
N2(��) of p0 and a constant �(��) > 0 such that for each p 2 N2(��) we have that all
stationary pairs (�z; �+) for (4.3) satisfy

inf
��2S�

k(�z; �+ � ��)k

� �(��)


�
(Lzz(z; �) �Lzz(z�; ��))�z + (r�(z)�r�(z�)) + (rg(z) �rg(z�))�+ + t

(g(z) � g(z�)) + (rg(z) �rg(z�))T�z + r

�(5.3)

For the left-hand side of this expression, it is easy to see that

inf
��2S�

k(�z; �+ � ��)k � 1p
2

�k�zk+ �(�+)
�
:(5.4)

For the right-hand side, we have by Lipschitz continuity of r2� and r2gi, i =
1; 2; : : : ;m that

k[Lzz(z; �)� Lzz(z�; ��)]�zk � C1 (�(z) + k�� ��k) k�zk;
kr�(z)�r�(z�)k � C1�(z);

kg(z) +rg(z)T�z � g(z�)�rg(z�)T�zk � C1�(z) (1 + k�zk) ;
for some constant C1 (which is, in particular, independent of the multiplier ��).
Moreover, by boundedness of S�, we have after a possible adjustment of C1 thatrg(z)�+ �rg(z�)�+ � C1k�+k�(z) � C1

�
C2 + �(�+)

�
�(z);

where C2 is a constant that bounds the norms of all elements of S�. By using these
expressions together with (5.4) in (5.3), we have

k�zk+ �(�+)(5.5)

� �(��)C3

�k�� ��kk�zk+ �(z)k�zk+ �(z) + �(�+)�(z) + k(t; r)k� ;
where C3 is a constant (in particular, independent of the particular choice of �

� 2 S�).
By reducing the size of N2(�

�) if necessary, we have that

�(��)C3 [k�� ��k+ �(z)] � 1=4 for all (z; �; t; r) 2 N2(��):(5.6)

Thus, by transferring terms involving k�zk and �(�+) from the right-hand side to
the left-hand side in (5.5), we obtain

k�zk [1� �(��)C3(k�� ��k+ �(z))]

+�(�+) [1� �(��)C3�(z)] � �(��)C3 [�(z) + k(t; r)k] ;
so that from (5.6), we have that

k�zk+ �(�+) � 2�(��)C3 [�(z) + k(t; r)k] :(5.7)

Note that (5.7) holds for the �xed choice of �� in S�, and only for (z; �; t; r) within
the neighborhood N2(�

�) of (z�; ��; 0; 0). Since

fN2(�
�) j�� 2 S�g
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is a cover of the set

fz�g � S� � f0g � f0g;(5.8)

we have by compactness of S� (and hence of (5.8)) that there is a �nite subcover, say

fN2(�
�
l ) j��l 2 S�; l = 1; 2; : : : ; Lg:

Note that the set

[l=1;2;:::;LN2(�
�
l )

is a neighborhood of (5.8).
By setting

C4 = 2C3 max
l=1;2;:::;L

�(��l );

we have from (5.7) that

k�zk+ �(�+) � C4 [�(z) + k(t; r)k] ;(5.9)

whenever

(z; �; t; r) 2 [l=1;2;:::;LN2(�
�
l ):(5.10)

We can choose �� su�ciently small that

�(z; �) � ��; k(t; r)k � �� ) (z; �; t; r) 2 [l=1;2;:::;LN2(�
�
l );

so that (5.9) holds for all (z; �) with �(z; �) � �� and k(t; r)k � ��.
In subsequent discussions, we use the term \iSQP" to describe the inexact SQP

procedure in which each iteration consists of obtaining a solution to the problem (4.3)
from the current iterate (z; �) and then setting

(z; �) (z +�z; �+);(5.11)

where (�z; �+) is a primal-dual solution of (4.3) that satis�es (5.1).
The next result shows that while the iSQP step may not give a \superlinear"

decrease in distance to the solution set, it does reduce the error substantially in the
eN (�) component of the primal error vector. (This result explains an observation
made while doing computational experiments for an earlier paper [18]. It is similar
to Lemma 3.12 of Fischer [8], though the latter result assumes WCC (2.9), which is
not needed below.)

Theorem 5.2. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold.
For all (z; �) with �(z; �) and k(t; r)k su�ciently small, the new iterate generated by
the iSQP algorithm satis�es

keN (z +�z)k = O(�(z)2) +O(ktk2) +O(krk):(5.12)

Moreover, we have

gB+(z +�z) = O(�(z)2) +O(ktk2) +O(krk):(5.13)
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Proof. Let f(zk; �k; tk; rk)g be any sequence with

�(zk; �k)! 0; k(tk; rk)k ! 0;

and let (�zk; �k+) be the primal-dual solution to (4.3) obtained when (z; �) = (zk; �k)
and (t; r) = (tk; rk). Denote the corresponding sequence of strict working sets for
the iSQP subproblem (4.3) by Bk. From Lemma 5.1, we have �zk ! 0, so since
g(zk) ! g(z�) and rk ! 0, none of the inactive indices j =2 B can be active in the
subproblem for k su�ciently large. We can therefore assume without loss of generality
that Bk � B.

Note �rst that from (5.1) and ke(z)k = �(z), we have

ke(zk +�zk)k � ke(zk)k+ k�zkk = O(�(zk)) + O(k(tk; rk)k):(5.14)

For all active indices i 2 Bk, we have from Taylor's theorem together with (5.14) and
(4.3) that

rgi(z�)T e(zk +�zk) = gi(z
k +�zk) � gi(z

�) +O(�(zk)2) +O(k(tk; rk)k2)
= gi(z

k) +rgi(zk)T�zk + O(�(zk)2) + O(k(tk; rk)k2)
= �rki + O(�(zk)2) + O(k(tk; rk)k2)
= ~rki ;(5.15)

where

~rki = O(�(zk)2) + O(ktkk2) +O(krkk):(5.16)

Meanwhile, for i 2 BnBk, we have from (4.2) and (5.1) that

rgi(z�)T e(zk +�zk) = gi(z
k) +rgi(zk)T�zk + O(�(zk)2) + O(k(tk; rk)k2)

� �rki + O(�(zk)2) + O(k(tk; rk)k2)
� ~rki ;(5.17)

where the estimate (5.16) holds once again.
Since (�zk; �k+) is the solution to (4.3), then by boundedness of S�, we have

from (4.4) and (5.1) that

r�(zk) + Lzz(zk; �k)�zk +
X
i2Bk

�k+i rgi(zk) + tk = 0

)r�(z�) +
X
i2Bk

�k+i rgi(z�) = O(�(zk)) + O(k(tk; rk)k):

By the de�nition (2.7) of B+, there is a �� 2 S� such that

r�(z�) +
X
i2B+

��irgi(z�) = 0; ��B+ > 0:(5.18)

(We can construct �� by taking �(i) 2 S� with �
(i)
i > 0 for each i 2 B+, according to

the de�nition (2.7), and setting �� =
P

i2B+
�(i)=jB+j.) By combining the last two

equations, we obtain

X
i2B+nBk

��irgi(z�) =
X
i2Bk

(�k+i � ��i )rgi(z�) + O(�(zk)) +O(k(tk; rk)k):



12 STEPHEN J. WRIGHT

By taking inner products of both sides with e(zk + �zk), and using (5.14), we have
by (5.15), (5.16), and boundedness of S� that

X
i2B+nBk

��irgi(z�)T e(zk +�zk) = O(�(zk)2) + O(ktkk2) +O(krkk):

Since ��B+ > 0,and since by (5.17) none of the terms rgi(z�)T e(zk+�zk), i 2 B+nBk
can be larger than a small positive number of the size indicated in (5.16), we have
that

rgi(z�)T e(zk +�zk) = ~rki for all i 2 B+nBk;

where the values of ~rki may have been adjusted from (5.17) but they still satisfy the
estimate (5.16). Hence, for the indices i 2 B+nBk, we can replace the inequality by
an equality in (5.17). By combining this observation with (5.15) and (5.17), we �nd
that

rgB+(z�)T e(zk +�zk) = ~rkB+ ;(5.19a)

rgB0(z�)T e(zk +�zk) � ~rkB0 ;(5.19b)

where

k~rkBk = O(�(zk)2) +O(ktkk2) + O(krkk):(5.20)

Consider now the partitioning of e(zk+�zk) into its eN (�) and eT (�) components.
From (2.13), we see that the eT component is obtained by solving

min
eT

1

2
keT � e(zk +�zk)k2;(5.21)

subject to rgB+(z�)T eT = 0, rgB0(z�)T eT � 0.

The problem (5.21) is a feasible and strictly convex problem, so it has a unique
solution. Consider too the following perturbation:

min
eT

1

2
keT � e(zk +�zk)k2;(5.22)

subject to rgB+(z�)T eT = ~rkB+ ; rgB0(z�)T eT � ~rkB0 ;

for which the (unique) solution is e(zk + �zk), because of (5.19). By applying
Lemma B.1, we have that the solutions of (5.21) and (5.22) are related as follows:

keT (zk +�zk)� e(zk +�zk)k = O(k~rkBk) = O(�(zk)2) + O(ktkk2) +O(krkk):

Since eN (�) = e(�)� eT (�), the result (5.12) follows immediately.
The second part of the result follows readily from a Taylor series argument, to-

gether with (5.19a), (5.14), and the estimate of k~rkk.
We are now ready to prove the result about local convergence of the iSQP algo-

rithm.
Theorem 5.3. Suppose that Assumption 1, Condition 2s.1, and the MFCQ con-

dition hold. Suppose that a new iterate (z+�z; �+) is generated by the iSQP algorithm
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from the point (z; �). Then for all (z; �; t; r) with �(z; �) and k(t; r)k su�ciently small,
we have

�(z +�z; �+) = k�� �+kO(�(z)) +O(�(z)2) +O(k(t; r)k):(5.23)

For the special case in which g(�) is linear, we have

�(z +�z; �+) = O(�(z)2) + O(k(t; r)k):(5.24)

Proof. Consider the problem

� r�(~z) +rg(~z)~�+ ~t
g(~z) + ~r

�
2
�

0

N (~�)

�
;(5.25)

where

~t = Lzz(z; �)�z +r�(z) + t+rg(z)�+(5.26a)

�r�(z +�z)�rg(z +�z)�+;

~r = g(z) +rg(z)T�z + r � g(z +�z):(5.26b)

By (4.4), the solution of (5.25) is simply (~z; ~�) = (z + �z; �+). Viewing (5.25) as a
perturbed version of (2.4), we can apply Corollary 4.3 of Robinson [17] to deduce that

�(z +�z; �+) = O(k(~t; ~r)k):(5.27)

By using the assumed smoothness of � and g, we have

~t = r2�(z)�z +
mX
i=1

�ir2gi(z)�z � [r�(z +�z)�r�(z)]

�[rg(z +�z)�rg(z)]�+ + t

=
mX
i=1

(�i � �+i )r2gi(z)�z + O(k�zk2) + t

so by using boundedness of the sets containing � and �+ and the estimate (5.1), we
obtain

k~tk � k�� �+k [O(�(z)) + O(k(t; r)k)] +O(�(z)2) +O(k(t; r)k2) + O(ktk)
= k�� �+kO(�(z)) +O(�(z)2) +O(k(t; r)k):(5.28)

For ~r, we have

~r = O(k�zk2) + r = O(�(z)2) + O(k(t; r)k):(5.29)

The result (5.23) is immediate from (5.27), (5.28), and (5.29).

The second result (5.24) also is immediate if we observe that the term containing
�� �+ vanishes from ~t when g(�) is linear.
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6. Stabilized SQP. Superlinear convergence of the stabilized SQP method
(sSQP) has been discussed by by Wright [18] and Hager [11]. We show here that this
method can be placed in the iSQP framework and that the superlinear convergence
result therefore can be derived from Theorem 5.3.

The sSQP algorithm is derived by applying proximal point ideas to the SQP
subproblem (4.1). Speci�cally, it adds a term to the objective for (4.1) that penalizes
the step from � to �+. From a current primal-dual iterate (z; �), we �nd a local
solution of the following minimax subproblem for (�z; �+) such that (�z; �+ � �) is
small:

min
�z

max
�+�0

�zTr�(z) + 1
2�zTLzz(z; �)�z(6.1)

+(�+)T [g(z) +rg(z)T�z]� 1
2�k�+ � �k2;

where � is a positive parameter that may be varied from one iteration to the next.
The �rst-order conditions for (�z; �+) to solve (6.1) are

� Lzz(z; �)�z +r�(z) +rg(z)�+
g(z) +rg(z)T�z � �(�+ � �)

�
2
�

0
N (�+)

�
:(6.2)

It is easy to show that for �(z; �) su�ciently small, any solution to (6.2) with k�zk
small must have �+i = 0 for i =2 B. For such indices i, we have

gi(z) +rgi(z)T�z � �(�+i � �i) � gi(z) +rgi(z)T�z + ��i � (1=2)gi(z
�) < 0;

when the second inequality holds whenever �(z; �) and k�zk are su�ciently small. By
complementarity, it follows that �+i = 0, as claimed. Therefore we can asymptotically
drop the inactive constraints from consideration. Denoting by ~B � B the subset of
active indices in (6.2) (so that �+

Bn ~B
= 0), we have by partitioning indices that

2
4 Lzz(z; �)�z +r�(z) +rg ~B(z)�+~B

g ~B(z) +rg ~B(z)T�z � �(�+~B � � ~B)

gBn ~B(z) +rgBn ~B(z)T�z + ��Bn ~B

3
5 2

2
64

0
N (�+~B )

N (�+
Bn ~B

)

3
75 :

Since ��Bn ~B � 0, the pair (�z; �+) that solves this system also satis�es

2
4 Lzz(z; �)�z +r�(z) +rg ~B(z)�+~B

g ~B(z) +rg ~B(z)T�z � �(�+~B � � ~B)

gBn ~B(z) +rgBn ~B(z)T�z

3
5 2

2
64

0
N (�+~B )

N (�+
Bn ~B

)

3
75 :(6.3)

Hence, we can view sSQP as a special case of (4.4) in which we have

t = 0; r ~B = ��(�+~B � � ~B); rf1;:::;mgn ~B = 0:(6.4)

There is no circular logic here in the choice of �+. If we �x �+ at its optimal value
from (6.1) and �x t and r in (4.4) at the values in (6.4), then the same (�z; �+) that
solves (6.1) (and (6.3)) will solve (4.4).

A form of the sSQP algorithm was proposed earlier by Bartholomew-Biggs [3].
The basic steps generated by Bartholomew-Biggs' algorithm have the form indicated
above (except that a quasi-Newton approximation is used in place of the actual Hes-
sian of the Lagrangian). However, there are numerous modi�cations that place the
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algorithm in the global convergence framework of that author's REQP algorithm [1, 2].
For instance, the multiplier estimates � are not necessarily updated at each iteration,
and successive values of � are chosen by heuristics rather than by an estimate of the
distance to the solution set, as is the case in [18]. The focus of Bartholomew-Biggs'
work is somewhat complementary to that of Wright and Hager, since the latter con-
cerns itself with local convergence issues (for the case in which MFCQ is satis�ed),
while the former focuses on global convergence. The sSQP approach is also closely
related to a variant of the method of multipliers/augmented Lagrangian algorithm
(see Bertsekas [4] and [5, Section 4.2]) in which just one Newton step is applied to the
augmented Lagrangian function at each iteration, and in which the parameter � is
decreased to zero. Indeed, such a variant is given for the case of equality constrained
problems by Bertsekas [4, p. 240], who points out its superlinear local convergence
properties (for the case in which the active constraint gradients are linearly indepen-
dent).

Superlinear convergence of the sSQP algorithm can be proved if the stabilization
parameter � is related appropriately to the distance �(z; �) from (z; �) to the solution
set S. Such an estimate is readily available; we show in the Appendix (Theorem A.1)
that

�(z; �)
def
=


� Lz(z; �)
min(�;�g(z))

� = �(�(z; �));(6.5)

where the \min" operation applies componentwise to the argument vectors.
Suppose now that we choose � to satisfy

� = �(z; �)� ;(6.6)

where � 2 (0; 1). From (6.3), since ~B denotes the active constraints in (6.2), we have
that

� Lzz(z; �) rg ~B(z)
rg ~B(z)T ��I

� �
�z

�+~B � � ~B

�
=

� �r�(z)�rg ~B(z)� ~B
�g ~B(z)

�
;(6.7)

Hager's proof of [11, Theorem 1] shows that the subset ~B � B has the property that
z� is a local minimumof NLP( ~B) that satis�es Condition 2s.3 applied
to NLP( ~B),

while �+i = 0, i =2 ~B. From [11, Theorem 1], we have that

k�+ � �k = O(�(z; �)):(6.8)

Therefore if we de�ne (t; r) as in (6.4), we have from (6.5), (6.6), and (6.8) that

(t; r) = O(�(z; �)1+� ):(6.9)

By substituting (6.8) and (6.9) into (5.23), we obtain

�(z +�z; �+) = O(�(z; �))O(�(z)) +O(�(z; �)1+� ) = O(�(z; �)1+� ):

Hence, the convergence rate of sSQP can be derived by placing it in the framework
of iSQP.

The same result can be derived from the results of Hager [11]. The following
result is a simple consequence of [11, Theorem 1].
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Theorem 6.1. Suppose that Assumption 1, Condition 2s.3, and the MFCQ con-
dition hold. Suppose, too, that � de�ned by (6.6) is used as the stabilization parameter
at each iteration of sSQP. Then there exists a positive threshold �� such that for any
(z; �) with �(z; �) � ��, there exists a local solution (�z; �+) of the sSQP subproblem
(6.1) such that

�(z +�z; �+) = O(�(z; �)1+� ):(6.10)

Proof. From Condition 2s.3, we have for each �� 2 S� that wTLzz(z�; ��)w �
�kwk2 for some � > 0 and all w with rgB+(��)(z�)Tw = 0. Moreover the choice (6.6)
ensures that we have

�0�(z; �) � � � �1;

for �(z; �) su�ciently small, where �0 and �1 are constants de�ned in Theorem 1
of Hager [11], with �0 \su�ciently large." By applying Hager's result, we �nd that
there is a neighborhood U(��) of (z�; ��) such that if (z; �) 2 U(��), then the sSQP
subproblem (6.1) yields a solution in U(��) such that (6.10) is satis�ed. Note that
the set

fU(��) j�� 2 S�g

forms a cover of S. By compactness, we can select a �nite subcover

fU(��1);U(��2); : : : ;U(��p)g;

for some ��1; �
�
2; : : : ; �

�
p 2 S�. By choosing �� positive but small enough that

�(z; �) � �� ) (z; �) 2 U(��1) [ U(��2) [ � � � [ U(��p);

we obtain the desired result.
In Wright [18], it was shown that if the initial estimate �0 is not too close to the

boundary of S� (in the sense that �0i � � for some � > 0 and all i 2 B), then all
steps are obtained from a system of the form (6.7) with ~B = B. Moreover, we can set
� = 1 in (6.6) (yielding a quadratic rate of convergence), and we need assume only
that the weaker Condition 2s.1 holds. Implementation of such an approach would not
be di�cult, since it requires only a reliable way to estimate the active set B, along
with solution of a subproblem to adjust �B so that all components of this vector are
su�ciently positive.

7. Fischer'sMethod. Fischer's method, as described in the paper [8], generates
steps �z in the primal variables by solving a standard SQP subproblem. The Lagrange
multiplier estimate obtained from this subproblem is then discarded, and an auxiliary
subproblem of similar complexity to the SQP subproblem is then solved to obtain the
new multiplier estimate. Superlinear convergence of the resulting algorithm is proved
in [8], under assumptions that we discuss later.

Fischer's method can be described in terms of the iSQP framework of Section 4 as
analyzed in Section 5. We can show that the primal step �z generated by this method
can be embedded in a primal-dual solution (�z; ~�+) to an inexact SQP subproblem
of the form (4.3), so that Theorem 5.3 applies. Superlinear convergence of the primal
iterates then follows from the fact that the di�erence between ~�+ and Fischer's speci�c
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Lagrange multiplier estimate �̂ has magnitude O(�(z)). Superlinear convergence of

Fischer's Lagrange multiplier estimates �̂ to the set S� follows from the fact that
�(�̂) = O(�(z)).

A single step of Fischer's algorithm proceeds as follows. First, given the primal
iterate z, the following subproblem is solved to �nd the pair (d; �̂):

�
r�(z) + d+rg(z)�̂
rg(z)T d+ g(z)

�
2
�

0

N (�̂)

�
:(7.1)

The primal component d is discarded, and �̂ is adopted as the new dual iterate. The
next primal step is then obtained by solving the SQP subproblem (4.2) from the point

(z; �̂), that is,

�
Lzz(z; �̂)�z +r�(z) +rg(z)�+

g(z) +rg(z)T�z

�
2
�

0
N (�+)

�
:(7.2)

The dual component �+ is now discarded (indeed, there is no need to calculate it at
all), and this iteration is complete. The next iteration begins by solving (7.1) again,

with z +�z replacing z, to obtain the new multiplier estimate �̂+.
Note that in the auxiliary problem (7.1), (d; �̂) is the primal-dual solution of the

problem

min
d

1

2
dTd+ dTr�(z); subject to rg(z)T d+ g(z) � 0

(see Fischer [8, p. 13]). More tellingly, we can view (7.1) as a perturbation of the
problem

� r�(z�) + d+rg(z�)�̂
rg(z�)T d+ g(z�)

�
2
�

0

N (�̂)

�
;(7.3)

in which z has been replaced by z�. Noting that the solution set for (7.3) is (d; �̂) 2
0�S�, we can again apply Robinson's results from [17] (and in particular [17, Corol-
lary 4.3]) to obtain the estimate

kdk+ �(�̂) = O(�(z));(7.4)

for all solutions (d; �̂) of (7.1).
Fischer [8, Theorem 3.13] shows that under certain assumptions (discussed below),

the primal component �z for the solution of (7.2) is also the solution of the following
iSQP subproblem:

� Lzz(z; �̂)�z +r�(z) +rg(z)~�+ + t
g(z) +rg(z)T�z + r

�
2
�

0

N (~�+)

�
;(7.5)

where the perturbation vectors t and r and the multiplier estimates ~�+ satisfy

t = 0; krk = O(�(z)2); k~�+ � �̂k = O(�(z)):(7.6)

Hence, Theorem 5.3 can be applied to deduce that

�(z +�z; ~�+) = k~�+ � �̂kO(�(z)) +O(�(z)2) +O(k(t; r)k) = O(�(z)2):(7.7)
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Since �(z +�z) � �(z +�z; ~�+), this expression implies Q-quadratic convergence in
the primal iterates. Q-quadratic convergence of the primal-dual iterates follows from
(7.4). Note that the multipliers ~�+ are never calculated explicitly by the algorithm.

The assumptions needed to prove Theorem 3.13 in [8] include the WCC condition
(2.9), the MFCQ condition (2.10), the second-order su�cient Condition 2s.1, and the
following constant-rank condition:

rgB+(z) has constant rank for all z near z�.(7.8)

The need to solve the auxiliary subproblem (7.1) at every iteration is a disadvantage
of Fischer's approach.

8. SQP with StrictWorking Sets. Although the preceding two sections show
that modi�ed versions of SQP algorithms converge superlinearly on degenerate prob-
lems (under certain assumptions), practical experience shows that standard SQP
strategies usually encounter little trouble with problems of this type. Frequently, the
strict working sets Bk for the QP subproblems settle down to a constant set in the
neighborhood of the solution, and the Lagrange multiplier estimates often approach
a unique limit.

As we saw in Theorem 5.3, superlinear convergence depends critically on stabi-
lization of the Lagrange multiplier estimates �k. Such stabilization is guaranteed to
occur if the strict working sets Bk eventually become subsets of some �xed set set
~B � B with the following properties:

(i) there is a unique multiplier ��( ~B) 2 S� such that ��i ( ~B) = 0 for i =2 ~B; and
(ii) the nonlinear program NLP( ~B) obtained by dropping the constraints i =2 ~B

from (1.1) still has a minimizer at z� that satis�es Condition 2s.1.
If these properties hold, the only possible limit for the sequence of Lagrange multiplier
estimates �k is the unique vector ��( ~B) de�ned in (i). Recall from the de�nition (3.5)
that �� contains precisely those subsets of B with properties (i) and (ii).

The code SNOPT [10] is a recent implementation of SQP that appears to exhibit
fast local on most degenerate problems of the type we consider in this paper. Rather
than our idea of a strict working set, SNOPT uses the slightly di�erent concept of
a working set Wk associated with each iteration k, with the properties that equality
holds for the ith linearized constraint if i 2 Wk; the multiplier estimates �ki are
zero for i =2 Wk; and the gradients rgi(xk), i 2 Wk are linearly independent. We
conjecture that the good behaviour of SNOPT is due to the fact that the working
sets Wk eventually become subsets of a set ~B with the properties (i) and (ii) above.
Features of SNOPT that promote this behavior, besides the maintenance of linear
independence already mentioned, include

(a) use of warm starts; that is, the working set Wk from the QP subproblem at
iteration k is used as a starting estimate of the working setWk+1 at iteration
k + 1; and

(b) the fact that it allows constraints not in the working set (i =2 Wk) to be
violated by small tolerances.

Typical behavior of an algorithm with these properties is as follows. Because of linear
independence of the gradients rgi(xk), i 2 Wk, a su�ciently advanced iterate will
produce a working set Wk with the property (i). Iterate k + 1 then uses Wk as a
starting guess and solves a QP that takes just the constraints i 2 Wk into account.
It �nds a solution with this working set in which the \ignored" constraints i =2 Wk

are violated only by small amounts, if at all, making this QP solution an acceptable
approximation to the true SQP step. It then sets Wk+1 =Wk, or possibly drops the
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indices from Wk+1 that have become inactive in the subproblem. The new working
set usually retains the property (i), and subsequent iterations will stay with this set
or some subset thereof, forcing the Lagrange multipliers to converge to a unique limit.

Unfortunately, a rigorous theoretical result concerning the SQP behavior just
discussed does not seem to be possible. Instead, we propose here a formal algorithm
called SQPsws (for \SQP with strict working sets") that is motivated by the informal
procedure with warm starts and tolerances just described. We show that if, near
the solution, a strict working set with the properties (i), (ii) is encountered at some
iteration, then Algorithm SQPsws converges superlinearly thereafter, even if the strict
working sets at later iterations fail to have one of these properties. While a strict
working set of this type is likely to be identi�ed in most practical situations, we
can prove a rigorous convergence result only under similar conditions to those of the
preceding two sections.

The key features of Algorithm SQPsws are its use of a stack of candidate warm-
start strict working sets (instead of just the working set from the previous QP sub-
problem) and its use of speci�c tolerances for the ignored constraints that are loose
enough to allow the Lagrange multipliers to stabilize (and therefore to allow inexact
solutions of the SQP subproblem) while being tight enough to guarantee superlin-
ear convergence. Speci�cally, the tolerances require that violation of the ignored
constraints be no more than �(zk; �k)1+� , where the quantity �(�; �) de�ned in (6.5)
measures distance from (zk; �k) to the solution set S, and � is a parameter in the
range (0; 1). The stack of active subsets maintained by Algorithm SQPsws has the
form

top! B̂s ! B̂s�1 ! � � � ! B̂1 ! B̂0 = f1; 2; : : : ;mg;

where s is a counter of stack size, the top element B̂s is the strict working set Bk�1
from the previous iteration, and

B̂s � B̂s�1 � � � � � B̂1 � B̂0;

where all inclusions are strict. The index sets B̂s�1; : : : ; B̂1 are all strict working
sets from previous iterations of the algorithm. Elements of the stack are popped
and discarded if the solution to the subproblem (8.1) fails to meet the prescribed
tolerances for the ignored constraints. As a last resort, if the stack is popped down
to its last element B̂0, the full SQP subproblem (4.1) is solved. In any case, the step
produced by each iteration of the algorithm �ts the iSQP framework (4.3), so the
theory developed in Section 4 can be applied once again.

Algorithm SQPsws

choose � 2 (0; 1) and set (z0; �0);

set k  0, s 0, B̂0  f1; 2; : : :;mg;
repeat

set �k  �(zk; �k), isqpsol  false;
while not isqpsol

�B  B̂s;
solve the SQP subproblem for the constraint set �B:

min
�z

�zTr�(zk) + 1
2�zTLzz(zk; �k)�z;(8.1)

subject to gi(z
k) +rgi(zk)T�z � 0, all i 2 �B,
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denoting its strict working set by Bk and its primal-dual

solution by (�z; ~� �B);
if gi(z

k) +rgi(zk)T�z � �1+�k for all i =2 �B
isqpsol true;

else

s s� 1;
end while

if Bk 6= �B
s s + 1, B̂s  Bk;

zk+1  zk +�z, �k+1  (~� �B; 0);
k  k + 1;

until convergence.

Our analysis of Algorithm SQPsws requires a number of technical results, most
of which pertain to the adequacy of the chosen subset �B of constraints in (8.1) in
de�ning an approximate solution of the full subproblem (4.1), and to the progress
that the resulting step makes toward the solution of the original problem (1.1).

We start by formalizing some of the ideas mentioned at the start of this section,
which pertain to variants of the nonlinear programming problem (1.1) and the iSQP
subproblem (4.3) in which some of the constraints are ignored. In (3.3), we de�ned
the extended nonlinear programming problem NLP( ~B) in which just a subset ~B � B
is enforced. We now de�ne the extended iSQP subproblem corresponding to ~B (and
to the extended nonlinear programming problem NLP( ~B)) as follows:

min
�z

�zT (r�(z) + t) + 1
2�zTLzz(z; �)�z;(8.2)

subject to gi(z) +rgi(z)T�z + ri � 0; i 2 ~B.

The KKT conditions for (8.2) are

� Lzz(z; �)�z +r�(z) + t+rg ~B(z)�+~B
g ~B(z) +rg ~B(z)T�z + r ~B

�
2
�

0
N (�+~B )

�
:(8.3)

Note that (8.2) is truly an iSQP subproblem for (3.3) only if the Lagrangian L(z; �)
does not contain terms in its summation for indices i outside of the set ~B, that is,
only if �i = 0 for all i =2 ~B. For generality, however, we allow �f1;:::;mgn ~B 6= 0 in some
of the results below.

Our �rst technical result is a simple result based on Ho�man's lemma concerning
the nearness of a given vector � 2 IR

m (with property �i = 0, for all i =2 ~B) to the
unique optimal multiplier ��( ~B) of NLP( ~B) for some ~B 2 ��.

Lemma 8.1. There is a constant � � 1 such that the following statement holds.
For all � 2 IR

m with the property that �i = 0 for all i =2 ~B, for some ~B 2 ��, we have

k�� ��( ~B)k = k� ~B � ��~B(
~B)k � ��(�);

where, as always, �(�) denotes the distance from � to the optimal multiplier set S� of
the original problem (1.1).

Proof. Denoting by P (�) the closest vector in S� to �, we have that

�(�)2 = k�� P (�)k2 =
X
i2 ~B

[�i � P (�)i]
2 +

X
i2Bn ~B

P (�)2i ;
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implying that

P (�)Bn ~B
 � �(�):(8.4)

Note that P (�) satis�es the following system of linear equalities and inequalities:

X
i2B

rgi(z�)P (�)i = r�(z�); P (�) � 0; P (�)i = 0; i =2 B:(8.5)

The following system, on the other hand, has the unique solution �� = ��( ~B):
X
i2B

rgi(z�)��i = r�(z�); �� � 0; ��i = 0; i =2 ~B:(8.6)

Because of (8.5), we have that P (�) violates (8.6) only in that possibly P (�)i > 0
for some i 2 Bn ~B. Hence, by Ho�man's lemma [13] and uniqueness of ��( ~B), we �nd
that there is a number �( ~B) such that

k��( ~B)� P (�)k � �( ~B)
P (�)Bn ~B

 :
By choosing

� = max
~B2��

�( ~B) + 1;

combining this expression with (8.4), and using kP (�)� �k = �(�), we have that

k�� ��( ~B)k � k� � P (�)k+ kP (�)� ��( ~B)k � ��(�);

giving the result.
We nowmodify two of the results of Section 5 to apply to those extended problems

(8.2) for which z� satis�es Condition 2s.1, that is, ~B 2 ��. The combination of these
two results|Lemma 5.1 and Theorem 5.3|with Lemma 8.1 yields some powerful
estimates.

Lemma 8.2. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold. Then
there exists a threshold value �� > 0 with the following property. If �(z; �) � �� and
k(t; r ~B)k � �� and �i = 0 for all i =2 ~B for some ~B 2 ��, then the extended iSQP
subproblem (8.2) has at least one solution (�z; �+), and for all such solutions we
have

k�zk+ k�+~B � ��~B(
~B)k = O(kz � z�k) +O(k(t; r ~B)k);(8.7)

where ��~B(
~B) is the (unique) optimal Lagrange multiplier for NLP( ~B) (3.3). Moreover,

we have that

kz +�z � z�k+ k�+~B � ��~B(
~B)k � k� ~B � ��~B(

~B)kO(�(z)) + O(�(z)2) + O(k(t; r ~B)k)
= O(�(�)�(z)) + O(�(z)2) +O(k(t; r ~B)k)
= O(�(z; �)2) +O(k(t; r ~B)k):(8.8)
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Proof. For a given ~B 2 ��, we obtain by applying Lemma 5.1 to (8.3) that there
is a threshold ��( ~B) such that (8.7) holds whenever


�

z � z�

� ~B � ��~B(
~B)
� � ��( ~B); k(t; r ~B)k � ��( ~B):(8.9)

(Note that we can write the distance of �+~B to the dual solution set for (3.3) explicitly

as k�+~B���~B( ~B)k, since this set contains just the single element ��~B(
~B).) By Lemma 8.1,

we have for all (z; �) with �i = 0, i =2 ~B that


�

z � z�

� ~B � ��~B(
~B)
� � kz � z�k+ ��(�) � 2��(z; �);

where the last inequality follows from � � 1. It follows that both bounds in (8.9) are
satis�ed if we set

�� =
1

2�
min
~B2��

��( ~B):

For (8.8), we obtain by applying Theorem 5.3 to the extended iSQP problem (8.2)
that

kz +�z � z�k+ k�+~B � ��~B(
~B)k � k�+~B � � ~BkO(�(z)) +O(�(z)2) +O(k(t; r ~B)k):

By applying the triangle inequality to the term k�+~B �� ~Bk, reducing �� if necessary to

ensure that the O(�(z)) term is smaller than 1=2, and rearranging, we obtain that

kz+�z�z�k+(1=2)k�+~B ��
�
~B
( ~B)k � k� ~B���~B( ~B)kO(�(z))+O(�(z)2)+O(k(t; r ~B)k);

yielding the �rst inequality in (8.8). The second relation follows immediately from
Lemma 8.1, while the third follows from (2.12).

We now are in a position to prove our main convergence result for Algorithm
SQPsws. We show that if a strict working set Bk from �� enters the stack at some
su�ciently advanced iterate, then it remains in the stack and the algorithm converges
superlinearly.

Theorem 8.3. Suppose that Assumption 1, Condition 2s.1, and MFCQ hold.
Then there exists a positive threshold �̂ such that if at some iteration �k we have
�(z

�k; �
�k) � �̂, and if there is an index set ~B 2 �� present in the stack at the start of

iteration �k, then ~B remains in the stack at all subsequent iterations, and Algorithm
SQPsws converges superlinearly with Q-order 1 + � .

Proof. All subproblems (8.1) considered by Algorithm SQPsws in which the
conditions gi(z

k) + rgi(zk)T�z � �1+�k , all i =2 �B have the form of (4.3) when we
set t = 0 and r to be a vector with elements whose magnitude does not exceed
�(zk; �k)1+� . Because of (6.5), we can choose �̂ small enough that �(zk; �k) � �̂
implies that

�(zk; �k) � ��; k(0; r)k � ��;

where �� is the threshold value such that the assumptions of of Lemma 5.1, Theo-
rem 5.2, and Theorem 5.3 are satis�ed when �(z; �) � �� and k(t; r)k � ��. We reduce

�̂ if necessary so that the conditions of Lemma 8.2 are satis�ed by (z; �), t = 0, and
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rB = O(�(z; �)1+� ) whenever �(zk; �k) � �̂. Further assumptions on the size of �̂ are
made in the course of the proof.

The main part of our proof is to show that at any iterate k for which

~B is present in the stack at the start of iteration k; and(8.10a)

�(zk; �k) � �̂;(8.10b)

we have that

~B is present in the stack at the end of iteration k;(8.11a)

�k+1
f1;:::;mgn ~B

= 0; and(8.11b)

�(zk+1; �k+1) = O(�(zk; �k)1+� ) � �(zk; �k):(8.11c)

By de�nition, the premise (8.10) is satis�ed at iteration �k, and so from (8.11a) and
(8.11c), it holds for all subsequent iterations. Hence, (8.11c) implies superlinear con-
vergence.

Suppose that (8.10) holds for some k. Since ~B is present in the stack at the start of
this iteration, the active set Bk�1 from the subproblem (8.1) at the previous iteration
must be such that Bk�1 � ~B. In particular, we have that �ki = 0 for all i =2 ~B.

At the end of iteration k, the set ~B can have disappeared from the stack only if
it was tried and rejected in (8.1), that is, if the solution to (8.1) obtained with �B = ~B
had

gi(z
k) +rgi(zk)T�zk > �1+�k ; for some i =2 ~B.(8.12)

Because of our choice of �̂, we can apply Lemma 8.2 to (8.1) by setting �B = ~B,
(z; �) = (zk; �k), and (t; r ~B) = 0. We obtain from (8.8) that

kzk +�zk � z�k = O(�(zk; �k)2);

while from (8.7), we have

k�zkk = O(�(zk)) = O(�(zk; �k)):(8.13)

Hence, because of gB(z�) = 0, we have that

gi(z
k) +rgi(zk)T�zk = gi(z

k +�zk) + O(k�zkk2)
= O(kzk +�zk � z�k) +O(k�zkk2)
= O(�(zk; �k)2); for all i 2 B.

Since from (6.5) we have that �k = �(�(zk; �k)), the condition (8.12) cannot hold for
any i 2 B. Neither can it hold for any inactive constraint for the NLP, because by
choosing �̂ small enough, we have from (8.13) that

gi(z
k) +rgi(zk)T�zk � (1=2)gi(z

�) < 0; for all i =2 B.
Hence, the violation (8.12) does not occur, so the set ~B will not be popped from the
stack.

Since ~B remains in the stack, we must have Bk � ~B, so that (8.11b) holds.
Since Bk � ~B, we have that the primal-dual solution of (8.1) with �B = Bk is an

approximate solution to the extended iSQP subproblem (8.2) with

t = 0; rBk = 0; 0 � �ri � �1+�k for i 2 ~BnBk:
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Because of our assumptions on �̂, Lemma 8.2 applies to (8.1) with �B = Bk, and we
obtain from (8.8) that

kzk +�zk � z�k+ k�k+1~B
� ��~B(

~B)k = O(�1+�k ) = O(�(zk; �k)1+� ):

Since

�(zk +�zk; �k+1) � kzk +�zk � z�k+ k�k+1~B
� ��~B(

~B)k;
the �rst relation in (8.11c) follows. The second relation in (8.11c) follows from a

su�ciently small choice of �̂.
It seems reasonable to expect a set from �� to enter the stack at some su�-

ciently advanced iteration in most nonpathological cases. The strict working set Bk
(for (zk; �k) close to S) is likely to belong at least to � by the following argument:
The solution of (8.1) satis�es at least the second-order necessary conditions for the
quadratic subproblem in which just the constraints i 2 Bk are enforced. Since we know
from Lemma 4.1 that there exists at least one �� 2 S� with B+(��) � Bk, we can rea-
sonably expect that at least second-order necessary conditions are satis�ed at z� for
NLP(Bk) as well. Hence, we would have Bk =2 � only if the second-order conditions for
NLP(Bk) are necessary but not su�cient|an uncommon scenario. Moreover, we can
expect Bk to belong to the more restricted set �� because, as mentioned above, active-
set solvers for the quadratic subproblem typically ensure that the active constraint
Jacobian rgBk(zk) has full rank. (This property can be assured in any case by the
simple procedure below.) In fact, our toleration of small violations in the non-enforced
constraints i =2 Bk tends to discourage even nearly-dependent active constraint sets.
Hence, the optimal Lagrange multiplier vector corresponding to Bk will be unique
unless rgBk loses rank between zk and z�|another uncommon occurrence.

The preceding paragraph suggests that we can prove that the conditions of Theo-
rem 8.3 are satis�ed if we make a few additional assumptions. One such assumption|
full rank of rgBk(zk)|can be guaranteed by applying a procedure based on the
following observations to remove some indices from Bk if necessary. Any solution
(�zk; �k+1) of (8.1) satis�es the system

X
i2Bk

rgi(zk)�k+1i = �r�(zk)� Lzz(zk; �k)�zk:(8.14)

If rgBk(zk) does not have full rank, there is a vector �� 6= 0 such that
X
i2Bk

rgi(zk)��i = 0:

Because of the MFCQ condition (2.10), we have for zk su�ciently close to z� that at
least one component of �� is negative. Since by (8.14), the vector (�zk; �k+1+���)
is a primal-dual solution of (8.1) for all � such that �k+1+��� � 0, we can choose �
to reduce at least one component of �k+1+��� to zero. By applying this procedure
repeatedly as needed, we can arrive at a revised strict working set Bk with the desired
property. In fact, by allowing a small violation of the equality in (8.14)|a violation
t = O(�1+�

k
) that stays within the iSQP framework (4.4) and hence retains the stated

convergence rate|we can remove even nearly-dependent constraints from the active
set Bk, thus increasing the likelihood that Bk belongs to ��.

Corollary 8.4. Suppose that Assumption 1, Condition 2s.3, and MFCQ are
satis�ed and that the CRCQ condition of Janin [14] holds; that is, there is an open
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neighborhood of z� such that for any subset B̂ of B, the matrix [rgi(z)]i2B̂ has constant

rank for all z in this neighborhood. Then there exists a positive threshold �� such that
if �(zk; �k) � �� for some k, Algorithm SQPsws converges superlinearly.

Proof. We prove the result by showing that if �(zk; �k) � �� for some point (zk; �k),
then solution of an iSQP subproblem at this point will yield an active set Bk for which
Bk 2 ��. Since we know that every iteration of Algorithm SQPsws takes a step that
�ts the iSQP framework (4.3), it follows that Bk is pushed onto the stack at this
point. Hence, superlinear convergence follows from Theorem 8.3.

From Lemma 4.1, we have that the strict working set Bk generated by iteration k
is such that there exists at least one �� 2 S� with B+(��) � Bk. Hence, by Lemma3.3,
we have that Bk 2 �. Since by our discussion above, the active constraint Jacobian
rgBk(zk) has full rank, and since the constant rank condition holds, we have that
rgBk(z�) has full rank also. Therefore by Lemma 3.2, we have Bk 2 ��.

Note that the constant-rank condition assumed here is stronger than the corre-
sponding condition (7.8) used by Fischer [8].
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Appendix A. Estimating the Distance to the Optimal Set.

An estimate of the distance from the current point (z; �) to the primal-dual opti-
mal set S is a critical ingredient in the modi�cations to the SQP algorithm discussed
above. We show here that the easily computed quantity �(z; �) (6.5) is a satisfactory
estimate in a neighborhood of S.

Theorem A.1. Suppose that Assumption 1, Condition 2s.1, and the MFCQ
condition is satis�ed. Then if � � 0, we have that

�(z; �)
def
=


� Lz(z; �)
min(�;�g(z))

� = �(�(z; �)):

Proof. We start with the easy part of the proof, which is to show that �(z; �) =
O(�(z; �)). By the assumed smoothness of � and g, we have

Lz(z; �) = Lz(z; �)� Lz(z�; P (�)) = O(�(z; �)):(A.1)

For �(z; �) su�ciently small, we have 0 � �i < �gi(z) for all i =2 B, and therefore

i =2 B ) 0 � min(�i;�gi(z)) = �i = j�i � P (�)ij � �(�):(A.2)

For the active indices i 2 B, we have
i 2 B ) min(�i;�gi(z)) � max(0;�gi(z)) � jgi(z) � gi(z

�)j = O(�(z)):(A.3)

The result �(z; �) = O(�(z; �)) follows from the estimates (A.1), (A.2), and (A.3).
The more di�cult part of the proof is to show that �(z; �) = O(�(z; �)). Our

main theoretical tool is again Theorem 4.2 of Robinson [17].
We �rst de�ne the vectors v 2 IR

m and ! 2 IR
m as follows:

vi =

� �gi(z) if �gi(z) < �i
0 otherwise

i = 1; 2; : : : ;m;(A.4)
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!i =

�
�i if �gi(z) � �i
0 otherwise

i = 1; 2; : : : ;m:(A.5)

For each i = 1; 2; : : : ;m, we have that either gi(z) + vi = 0 or �i � !i = 0. We have
also that g(z) + v � 0 and �� ! � 0, and therefore, by de�nition of N (�) in (2.5), we
have that

g(z) + v 2 N (�� !):(A.6)

Note too that v and ! are complementary; that is,

v � 0; ! � 0; vT! = 0:(A.7)

In fact, we have that

v + ! = min(�g(z); �);

and so from (A.7), (A.2), and (A.3) we obtain that

kvk2 + k!k2 = kv + !k2 = kmin(�g(z); �)k2 = O(�(z; �)2):(A.8)

We therefore have the following estimates for v and w:

kvk � O(�(z; �)); k!k � O(�(z; �)):(A.9)

We now de�ne perturbed variants of the objective function � and constraint
function g as follows:

�̂(ẑ; û; v̂)
def
= �(ẑ) � ẑT û

ĝ(ẑ; û; v̂)
def
= g(ẑ) + v̂;

where (û; v̂) is the perturbation vector. Note that �̂(�; 0; 0) = �(�) and ĝ(�; 0; 0) = g(�).
It is not di�cult to show, with the help of (A.6), that (ẑ; �̂) = (z; �� !) is a primal-
dual solution of following perturbed version of (1.1):

min
ẑ

�̂(ẑ; û; v̂) subject to ĝ(ẑ; û; v̂) � 0;

where

û = Lz(z; �� !); v̂ = v:

Both perturbations are small. For û, we have from (A.1) and (A.9) that

kûk = kLz(z; � � !)k

� kLz(z; �)k+


mX
i=1

!irgi(z)
 � O(�(z; �)) +O(k!k) = O(�(z; �));(A.10)

while for v̂, we have immediately from (A.9) that kv̂k = kvk = O(�(z; �)). Hence,
(z; �� !) is the solution of a slightly perturbed nonlinear program, where the size of
the perturbation is uniformly small for (z; �) near S, so we can apply Theorem 4.2 of
Robinson [17].
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By the �rst inequality in the cited theorem, we have that

�(z; �� !) = O

�
dist

�
0;

� Lz(z; �� !)
g(z)

�
�
�

0
N (� � !)

���

= O (kLz(z; �� !)k+ dist(g(z); N (�� !))) :(A.11)

For the �rst term, we have as in (A.10) that

kLz(z; �� !)k = O(kLz(z; �)k) + O(k!k):
For the second term, we have by application of the triangle inequality and (A.6) that

dist(g(z); N (� � !)) � kvk + dist(g(z) + v;N (�� !)) = kvk:
By substituting these estimates into (A.11), we obtain

�(z; � � !) = O (kLz(z; �)k+ kvk+ k!k) :(A.12)

By applying the triangle inequality again, we obtain from (A.8) and (A.12) that

�(z; �) � �(z; �� !) + k!k
= O (kLz(z; �)k+ kvk+ k!k)
= O (kLz(z; �)k+ kmin(�g(z); �)k)
= O(�(z; �));

as required.
The estimate (6.5) was proposed by several other authors independently of this

paper. Facchinei, Fischer, and Kanzow propose the same estimate in a revised version
of their paper [7]. Hager and Gowda [12, Theorem 1, Theorem 3] propose a more
general measure, which reduces to (6.5) when � � 0 and does not require the MFCQ
condition to hold.

Appendix B. Perturbation Analysis of a Convex Program.

We consider the following convex quadratic program:

min
x

1
2x

TQx+ cTx subject to Ax = b; Cx � d;(B.1)

where Q is symmetric positive de�nite. Suppose the constraints satisfy the following
property

Aw = 0; Cw < 0; for some vector w:(B.2)

If in addition we were to assume that the rows of A were linearly independent, these
constraints would satisfy the MFCQ. We have the following result.

Lemma B.1. Consider the problem (B.1), where we take Q, A, and C to be �xed
while c, b, and d are allowed to vary. Assume that (B.2) holds. Then

(i) (B.1) has at most one solution x(c; b; d) for any vector triple (c; b; d), and if
in addition the rows of A are linearly independent it has exactly one solution;

(ii) If the solution exists for two vector triples (c; b; d) and (c0; b0; d0), the following
Lipschitz continuity property is satis�ed:

kx(c; b; d)� x(c0; b0; d0)k � Lk(c; b; d)� (c0; b0; d0)k;(B.3)

where the constant L depends only on Q, A, and C.
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Proof. Because the objective function is strictly convex and the feasible region
is convex polyhedral, a unique solution will exist whenever the feasible region is
nonempty. When the MFCQ is satis�ed, the feasible set is in fact nonempty for
all b and d. Therefore, (i) is true.

The proof of (ii) is similar to that of Proposition 7.5.9 and Corollary 7.5.10 of
Cottle, Pang, and Stone [6], so we omit the details.
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